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Abslra(:l -Starting with a three-dimensional non-linear formulation ofelasticity and employing the
variational procedure together with a suitable and proper strain and displacement field. general
forms of kinematical relations. equilibrium equations. and a set of one-dimensional constitutive
equations have been derived for spatial rods undergoing small finite deformations. These equations
can be employed to study different types of spatial rod elements for different geometries. loading.
and cross-sectional shapes. The formulations take account of the influence of the loading behavior.
either conservative or non-eonservative loading. The corresponding equations for the classical rod
theory are extracted from the derived. general non·linear equations.

I. INTRODUCTION

The non-linear theory of elastic spatial rods permits an approach to the solution of a series
of important problems which usually do not arise in classical theory. Problems such as the
stability. lurge deflection. and post-buckling analysis of rods cun be studied in this context.
In gem:ral. there are two sources of non-linearity in structural problems: (I) geometric non­
lineurity. which occurs when deformations are of such magnitude that their influence in
equilihrium considerations cannot be ignored; (2) material non-lineurity. which occurs
when the stress --strain rclutions of the structural materiuls are non-linear. This study is
devoted to a procedure for h'lndling certain non-linearities in the rod geometry.

Published works in the field of non-linear analysis of rods are to some extent non­
general. In some cases. the formulations presented are limited to a specific kind of rod
shape. such as beum. curved beam. or prctwisted rod. In some cases. only the non-linear
lerms in the strains are taken into account, and the non-linearities in curvatures are ignored.
In many cases. the shearing deformations are neglected and the effect of the loading behavior
due to the displacement field is not included (see. for ex,lmple, Pan, 1962a.b; Eisley. 1963;
Rosen and Friedmann. 1979; Rcissner. 1983. 1984. 1985).

In what follows. the formulations in the non-linear theory of elasticity have been used
to set up the kinematical relations for spatial rods. Kirchhoff's assumption has been used.
together with a suitable displacement and strain field variation, taking into account the
non-lineurities in strains and curvatures. The principle of minimum potential energy has
been used to derive a system of non-linear equilibrium differential equations and also a
form of one-dimensional constitutive relations. The different kinds of loading behavior due
to the displacement field have been studied and are incorporated in the formulations. The
classical theory of spatial rods has also been derived.

2. GOVERNING EQUATIONS

Consider a volumetric element of a spatial rod as shown in Fig. I. The orthogonal
curvilinear coordinate system OC.OC2OC) is chosen as the natural coordinates of the center line
of the rod. with t the unit tangential vector, n the unit normal vector and b the binormal
unit vector of the center line in the undeformed state. To derive the governing equations in
this curvilinear coordinate system. the position of every point must be expressed in terms
of %1. %:' and s. where s is the coordinate in the oc) direction. (n this coordinate system the
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Fig. I. Global and natural coordinate systems of an undeformed rod.

non-linear strains (1:11. I:n. 1:3). )'IZ. )'ZJ. )'JI) at any point of the spatial rod can be written
in terms of the linear strains (eij ) and rotations Wj. in the form (Novozhilov. 1963):

f:.IJ = ('.1.1 + Hdl + Oe.\l +(I)z)z +( kn -WI)Z)

}' Il = ('ZZ +('11 (~('IZ -WI) +('u( kll +W.I) + (k,.l-Wl)( kl.1 + WI)

}'n = ('Z.I +e22( !ell -WI) +e.lJ( kn +W.) + Oe21 -Wl)( ieJl +Wz)

)'JI = ('ll +<'.I1(kJl-wz)+ell(!ell +wz)+(!e12- w IH!ell+W,), (I)

If u. v and w designate the displacement components of this volumetric clement in the
coordinate system a laZal. it is proved in the linear theory ofel'lsticity by Novozhilov (1963)
that the linear strains e/j. in this orthogonal curvilinear coordinate system can be written
as

I av I iJH2 I vll2
e" = - -- + -- -- w+ -- -- u
•• H 2 oa 2 H 2H J va J H 2H I oa I

1 ow I vH J I iJH)
(3) = - - +-- --u+-- --v

H) vrx) II) H I va. I H) H 2 vrx 2

el2 = ~~ ()~~ (;J+ Z~ a~2 (;.)

(2)

where HI. H 2 and H) are certain coefficients defined as
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(3)

Similarly, the angles of rotation in the same orthogonal curvilinear coordinates can be
written in terms of the displacements and the coefficients H h H 2 and H J as:

(4)

If the position vector of any volumetric element of rod. R. is expressed in terms of the
glob,,1 coordinates XYZ and the local coordinate system a Iex ZCE) as

(5)

where r is the position vector of the point where the ccnter tine meets the pcrpcndicul'lr
cross-sectional plane (Fig. I). then by considering the relations (3) and (5) the coefficients
II .. 1/2 anti III arc ddincd as

Based on Frenet relations for a spatial curve (Thoma~. 1965)

dt do db
<is = Kn. ds = rb-Kt. <is = -TO

(6)

(7)

where K and t' are the curv~lturc and the twist of the center line of the rod element in the
undcformed state, respectively. Utilizing (6) and (7) it can be proved that:

and also

(8)

cHI = oH, = iJH 2 = cH2 = 0
iJail va) oa, cal
all] I ., :1
-iJ- = -H (-K+K-a, +cxlr ),

al J
(9)

Since the dimensions related to the lX, and 0:2 coordinates are usually much smaller than
11K and ll'r, it can be concluded that for thin rods, the following approximations can be
made:
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H] ~ 1.0

iJH3
~~-K,
(,(X\

( 10)

We can now write the linear strain components and the rotation angles in terms of the
displacements and the curvature by using the relations in (2). (4), (8), (9) and (10) in the
following form

ou OW
2W2 = -iJ - -;- + Kw,

5 1/01:1

OW
eJ)=--Ku

05

ow OU
e13 =-;- + ~ + Kw

v(X 1 1/5

Ot' OU
2w]=---.

001:\ 0(X2
(II)

Now. the non-linear strain components in (I) can be written in terms of displacement
components and the curvature of the point of the rod as follows:

()W I [(elW )2 (CU )2 (iJV)2Jf.: 3J = -- - Kit + - - - Ku + -- + Kw + -os 2 os CS ()S

(12)

Note that for a slender rod the other strain components f.: I J, 1: 22 and Y12 arc sm~lIl and
usually negligible as compared to the quantities e]), II] and Yn. Also, the first term in the
bracket in the right hand side of the expression for ell can be neglected as compared to its
first power outside the bracket. This assumption corresponds to a related assumption made
in the non-linear theory of straight bars (see Dym and Shames, 1973). Utilizing Kirchhoff's
assumptions (see for example, Novozhilov, 1963) we may write the displacements at every
point within the cross-section in terms of the displacement components of the center line
u, v and wand the position (x, and rotation angle of the cross-section O; in the form of

u = ii-0I:203

V = 6+01:10]

W = tV-0I:.02+01:201' ( (3)

ii, t', Ii', 0J, O 2 and 0 J arc functions of s only. The mathematical meanings of 0, and 02
are VW/OCZ2 and -VW/VOI:I at 01:, = 01:2 = O. respectively. Also, 0) is -iJU/iJ(X2 or Vt,/c(X, at
cz I = (X2 = O. Inserting the above approximations for displacements in eqns (12) and ignoring
the comparatively small differential terms of higher orders, the three dominant strain
components at every point of the rod can be written as

eJ] = e) -0I:.k2+(X2k,

YI) = Y.-0I:2k ],

(14)
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where eJ is the axial strain, 1', and }'2 are the shear strains, k, and k 2 are the curvature
changes. and k J I and k J2 are the changes of pretwist of the center line of the rod, and they
are in the form of

00k ll = _.l_ K0,.as
D0.1

k.12 = -~-.os
(15)

The relations given in (14) .llld (15) arc fairly general non-linear kinematical relations for
spatial curved and pretwisted rods undergoing small deformations. The underlined parts
of the equations arc those applied to classical (linear) rod theory. In order to derive the
equilibrium and the one-dimensional constitutive relations as well as the form of the bound­
ary conditions one can usc the total potential energy of an element of the rod as the
functional of the problem. The variational procedures can then be used as a mathematical
tool to find the stutionary values of this functional. Here, the total potential energy of an
element of the rod is composed of the strain energy and the work done by external forces;
it can be written as

where

Total Potential Energy = te = te. + te. (16)

(17)

External Work = 7[. = - f(FIU+F2V+FJW+G,0 1+G20 2+GJ0 J)ds

- L [Q,U+Q2V+QJIV+M,0, +M20 2+MJ0 J]s_s. (18)
k-i.j

in which F.. F2 and FJ are the external distributed forces, and G I , G2 and GJ are the
distributed moments along the length of an element of a rod from Si to Sj' Q.. Q2 and QJ
are the internal forces, and Nt.. Nt 2 and Nt J are the internal moments at the ends of the rod
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Fig. 2. Internal and ellternal forces on an element of a spatial rod.

(Fig. 2). For the rod to be in equilibrium. the variation of the total potential energy of the
element must be zero. that is:

(19)

The variation in the strain energy can be written as:

in which

i5l:l1 = i51:.I-l.Xti5k2 +I.X2 i5k I

i5YI) = 15Yt -I.X215k 31

i5}'2) = i5Y2 + I.X I 15k )2

0')) = £1:)), 0'13 = GYIJ' 0'2.1 = GY2)

(20)

(21)

where O',j are the stress components. Carrying out the integration over the cross-section of
the rod. Le. integrating over I.X I and I.Xl. we obtain

in which

(Q). MI. M 2) = f f(I.I.X2' -I.X.)I1)) d~1 d~2

(Qt. Q2. M J.. M n ) =ff(11\.1,0'2)' -I.X20'IJ. 1.X,0'2J)dI.X, d:X2 (23)

where (Qt. Q2. QJ) and (M I. M 2) are the sectional internal forces and moments, respectively.
M JI and M n are the cross-sectional torques.

Using the relations (15). (18), (19) and (22). we obtain the following equilibrium
equations, the so-called Euler equations related to the functional:
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(24)

Again. the underlined parts of the equations arc those applied to the classical rod theory.
The natur'll boundary conditions for the above differential equations at end i may be

derived as

[QI-eIQ~+(~:;+k1')Q'+KezMz-(d~.'-Ke,)Mll." = Q.I.

(Q2+eIQ. + ddL~ Q)- dd'~;' M2) = Q21•
.~ s "_",

[(Mll +Md- (~~ +KIV)M 1 - ~£ M21_J' = Mll,

(Ql)J~', = OJ I.. (M')PJ, = A--fdi. (M 2)J_" = M 2 1; (25)

and the geometric boundary condition is

(26)

To derive the one-dimensional constitutive equations (the moment-eurvature and force­
strain rcl'ltionships). one can usc the rcl'ltions given in (14). (21) and (23). The matrix forms
of the one-dimensional heuristic constitutive equations arc

t'} C"
Sit.: -S")r}A--f. = Slf: fiE -f l2l: k.

M2 -Su: -f I2 F. lu: k z

r'} (A,;
0 SIG

o)r}Qz 0 AG 0 Sw 1z (27)
A--fJl = -SIG 0 fiG o k JI

MJ2 0 S2G 0 12G k 12

in which

SAS 21:6·0
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Fig. 3. Natural and principal local axes of the rod cross-section.

(A E• SIE' S2E. 1IE.lzE,II2E):;::: ff(t. (X~. (X I. (Xi. OCr. IX, oc~)E dC( I docz

(AG•SIG. SZG.lIG,lzG):;::: ff(I, OC2. ocl< oci. ocr)G d:x I doc2' (28)

In the above equ'ltions the elasticity constants E and G can be variable over the cross­
section with respect to oc, and t1C2'

Equ'ltions (15). (24). (25) and (27) are the basic governing equ'ltions for small defor­
mation theory ofclastic spatial rods in natural coordinate systems. If one sets the curvature
of the rod equal to zero; that is. K, :;::: K z :;::: K.\ :;::: O. the governing equations for stmight
beams ure derived. In the same way, by inserting K, :;::: K2 :;::: 0 in the "bove-mentioned
equutions the governing equations for pretwisted rods are derived. The resulting equations
arc the same as those derived by Rcissner (1983. 1985). For another test. one can obtain
the formul.ttions for the classical theory of spatial rods.

3. CLASSICAL THEORY OF SPATIAL RODS

Let xy be the principal axes of the cross-section of the rod making an angle <IJ with the
natural axes !XI::;(~' as shown in Fig. 3. Using the rotation matrix for the X)'!X) coordinate
system in OC'::;(2!X). and employing the underlined terms in eqn (15), the kinematical relations
in the local coordinate system can be written in the form

where

{tL}:;::: ~{uL}+[K]{uL}+[J]{el}
<Is

{kL }:;::: ~{eL}+[K,HeL}
ds

(29)

{It}r Ll _ •
if. j - 'Iv '

}')

{fie} - {fl.
The superscript L means that the value in the local (:()'IX) coordinate system has been used.
The matrix [K] is the curvature matrix in the local coordinate system. that is
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K. )
-K.

o
(30)

where ~< =K sin~, K. =K cos ~ and K: = d~/ds. The matrices [J] and [K l ] in eqn (29)
are given as

-K:
o

K., cos1 <I>
1(, sin1 ~

K.. )-K.,
o .
o

(31)

Using the underlined terms in eqn (24) the equilibrium equations for classical rod theory
in the local .lyOC3 coordinate system can be simplified to the form

wherein

:'r{QL}+[K]{QL}+{FL} = {OJ

:'v{ML}-[KdT{ML}+[J]{QL}+{GL} = {OJ (32)

By utilizing the constitutive relations given in (27), the moment-curvature and force-strain
relations for the rod in classical theory can be written in the local coordinate system
(assuming E and G arc constants over the cross-section) as

{QL} = [A]{cL}

{A-i L} = [/]{kL} (33)

where

CA 0

~ ). c' 0 0 0)
[A] = ~ GA [I] = 0 Ely 0 0

0 0 GI, o .
0 EA 0 0 0 GI,

The general formulations developed can be employed for different kinds of spatial rod
clements such as straight beams, curved beams and pretwisted rods. For beams, we insert
K. = K•. = K: = 0 in the formulations. In the same way, for curved beams we insert K: = 0,
and for pretwisted rods we let K, = K,. = O. The special equations derived in this way are
in full agreement with those obtained for classical rod theory (Love, 1944; also see, for
e~ample, Tabarrok et al., 1988; Farshad et al., 1989; Banan et al., 1989).
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4. BEHAVIOR OF APPLIED LOADING DUE TO DEFORMATION FIELD

The deformations in non-linear elasticity theory cannot be assumed infinitesimal;
therefore. the magnitudes and the directions of the applied external forces in the deformed
state of equilibrium are not the same as those in the undeformed state. The transformation
matrix from the undeformed state to the deformed state based on non-linear theory of
elasticity (Novozhilov. 1963) can be written as

(

l+e11

[T] = el~-w3

e13+ w2

e12+w3 eI3-W~)
I +e2~ e23+wl'

e23-wl I +e33

(34)

The above matrix can be simplified for the spatial rods if one can insert instead of eij and
Wj the terms of displacements and rotation angles from relations (II) and (13). It becomes

1.0 0 3 -0,]
[T] = [ -0., 1.0 0\ (35)

dt; dt;
1.0-- +Kli'

dsd.~

The equilihriulll equations (25) have been written in the deformed state hut as related to
the undeformed directions. Therefore. the external applied loads {F} and {G:- must be
spccilied correspondingly. To make distinctions between the loadings at the undeformed
and the deformed state let {l:· and {(;:- represent the loads in the undeformed state in
undeformed directions and {PJ- and {(}} represent the loads in the deformed state in the
deformed directions. It must he mentioned that {F} and {G} are usually functions of the
displacement field. Three dilferent kinds of load hehavior due to the deformation field are
discussed here. These are the constant direction load. the follower load. and the polar load.

4.1. CUIIsta1l1 directiof/ loat!
In this case. {p} and {(;:- are given and have constant directions; therefore.

fGI - [T]fGll f - l f· (36)

Utilizing the following relations

we have

{F} = {l} and {G} = {G}. (37)

This means that as far as the directions are concerned the external loads must be directly
inserted in the equilibrium equations, but for their magnitudes, they arc functions of the
displacement field.

4.2. Follower load
Because of the nature of this kind of loading

{F} = {F}, {G} = {G}.

Utilizing the following relations

(38)
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Fig. 4. Polar loading behavior due to displacement field.
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(39)

Therefore. for this kind of loading the din:ctions of the applied external loads must be
transformed into the undeformed directions using the transformation matrix knowing that
their magnitudes are functions of the displacement field.

4.3. Polar load
In this kind of loading the applied external forces are always directed to a point called

pole: if they are of moment type. then the moment <lxis goes through the pole. By considering
<I sp,lti<l1 road <IS in Fig. 4. if the vectors ro• r <lnd u <Ire defined in natural coordinates
iXliX21X). we will h<lve

I • (ro-r-u)
{F f = IIFII~-~~-'---­

IIro-r-ull

• (ro-r-u)
{G} = IIGII ~_._--­

IIro -r-uli
(40)

where {II} = {II, V.IV}T. ris the position vector of the external applied load in the unreformed
state and ro is the position vector of the pole all expressed in the natural coordinate system.
In the above equations the load is assumed to act toward the pole: if it acts away from the
pole it must be multiplied by - I and its magnitude may be a function of the displacement
field.

S. CONCLUSION

A small finite deformation theory for spatial rods was presented. Different kinds of
loading. conservative or non-conservative. were discussed and formulated. As a special
case. the classical rod theory was derived. The formulations are in a systematic form and
may be applied to dilTerent rod clements such as straight and curved beams and pretwisted
rods. One of the salient features of the formulations is to study the instability of the slender
bodies. The formulation can also be used as a basis for use with different numerical
techniques to study the non-linear behavior of rods under different loading conditions. In
this respect. a theoretical and numerical finite element stability analysis of spatial rod
systems has been developed which is the subject of another paper by Karami el al. (1990).
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