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Abstract —Starting with a three-dimensional non-linear formulation of elasticity and employing the
variational procedure together with a suitable and proper strain and displacement field, general
forms of kinematical relations, equilibrium equations, and a set of one-dimensional constitutive
equations have been derived for spatial rods undergoing small finite deformations. These equations
can be employed to study different types of spatial rod elements for different geometries, loading,
and cross-sectional shapes. The formulations take account of the influence of the loading behavior,
either conservative or non-conservative loading. The corresponding equations for the classical rod
theory are extracted from the derived, general non-linear equations.

1. INTRODUCTION

The non-lineuar theory of elastic spatial rods permits an approach to the solution of a series
of important problems which usually do not arise in classical theory. Problems such as the
stability, large deflection, and post-buckling analysis of rods can be studied in this context.
In general, there are two sources of non-lincarity in structural problems : (1) geometric non-
lincarity, which occurs when deformations are of such magnitude that their influcnce in
cquilibrium considerations cannot be ignored ; (2) material non-lincarity, which occurs
when the stress -strain relations of the structural materials are non-lincar. This study is
devoted to a procedure for handling certain non-lincarities in the rod gecometry.

Published works in the ficld of non-lincar analysis of rods are to some extent non-
general, In some cases, the formulations presented are limited to a specific kind of rod
shape, such as beam, curved beam, or pretwisted rod. In some cases, only the non-linear
terms in the strains are taken into account, and the non-linearitics in curvatures are ignored.
In many cases, the shearing deformations are neglected and the effect of the loading behavior
due to the displacement field is not included (see, for example, Pan, 1962a.b; Eisley, 1963 ;
Rosen and Friecdmann, 1979 ; Reissner, 1983, 1984, 1985).

In what follows, the formulations in the non-linear theory of elasticity have been used
to set up the kinematical relations for spatial rods. Kirchhoff’s assumption has been used,
together with a suitable displucement and strain field variation, taking into account the
non-lincarities in strains and curvatures. The principle of minimum potential energy has
been used to derive a system of non-linear equilibrium differential equations and also a
form of onc-dimensional constitutive relations. The different kinds of loading behavior due
to the displacement field have been studied and are incorporated in the formulations. The
classical theory of spatial rods has also been derived.

2. GOVERNING EQUATIONS

Consider a volumetric element of a spatial rod as shown in Fig. 1. The orthogonal
curvilinear coordinate system a,a,a; is chosen as the natural coordinates of the center line
of the rod. with t the unit tangential vector, n the unit normal vector and b the binormal
unit vector of the center line in the undeformed state. To derive the governing equations in
this curvilinear coordinate system, the position of every point must be expressed in terms
of 2. 2,, and s, where s is the coordinate in the a, direction. In this coordinate system the
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Fig. 1. Global and natural coordinate systems of an undeformed rod.

non-linear strains (&,,, €12, €33, 712» Y23. ¥31) at any point of the spatial rod can be written
in terms of the linear strains (¢;,) and rotations w;, in the form (Novozhilov, 1963):
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If u, v and w designate the displacement components of this volumetric element in the
coordinate system a,ot,a 3, it is proved in the lincar theory of elasticity by Novozhilov (1963)

that the linear strains ¢, in this orthogonal curvilincar coordinate system can be written
as
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where H,, H, and H, are certain coefficients defined as
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Similarly. the angles of rotation in the same orthogonal curvilinear coordinates can be
written in terms of the displacements and the coefficients H,, H, and H, as:

I
260‘ = iljﬁ: - (H}W)— (Hﬂ)]
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If the position vector of any volumetric element of rod, R, is expressed in terms of the
global coordinates XYZ and the local coordinate system a,x,a, as

R=JXi+Yj+Zk=r+anta;b S
where 1 is the position vector of the point where the center line meets the perpendicular

cross-sectional plane (Fig. 1), then by considering the relations (3) and (5) the coefficients
Hy, Hyand H; are defined as

oR JR R
fIE#E'—l-‘ f{zsb—-'a:" H3=_a—a:’ (6)

Based on Frenet relations for a spatial curve (Thomas, 1965)

dt dn db

a——i{n, a;-:bm!(t, PP -1 N
where K and r are the curvature and the twist of the center line of the rod element in the
undeformed state, respectively. Utilizing (6) and (7) it can be proved that :

H =10, H,=10, Hy=(1-Ka}) 4 (xi+a})r? {8)
and also
oH, OH, oH, oH, .,
day Oay Oy day
doH, l .

————-———-( K+ K%, +x,1), gf{—’= {oy17). )]
0a1

da, .Hm:
Since the dimensions related to the a2, and x, coordinates are usually much smalier than
t/K and 1/r, it can be concluded that for thin rods, the following approximations can be
made:
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We can now write the linear strain components and the rotation angles in terms of the
displacements and the curvature by using the relations in (2). (4), (8). (9) and (10) in the
following form

u _ o _gv: K
€ = %, en-ﬁa:’ en—as“‘ u
cu + v v ow ow + Ju K
3= -~ 1y = o e = - v
€12 ons Oy’ €3 =55 Jay’ €1 ox, Os
ow Qv ou dw v du
2(U|—-é——, 5}‘ wzza—a‘;+KM, 2w3—a—‘§'{1—2. (ll)

Now, the non-linear strain components in (1) can be written in terms of displacement
components and the curvature of the point of the rod as follows:
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Note that for a slender rod the other strain components &4, £;, and y,, are small and
usually negligible as compared to the quantities €5, 7,3 and y,,. Also, the first term in the
bracket in the right hand side of the expression for &y, can be neglected as compared to its
first power outside the bracket. This assumption corresponds to a reluted assumption made
in the non-lincur theory of straight bars (see Dym and Shames, 1973). Utilizing Kirchhoff’s
assumptions (see for example, Novozhilov, 1963) we may write the displacements at every
point within the cross-section in terms of the displacement components of the center line
u, v and w and the position », and rotation angle of the cross-section ©; in the form of

u=i—ua,0,
v=0+0,0,
w=W—a.91+a:O,. (13)

a, ¢, w, ©,, ©, and O, arc functions of s only. The mathematical meanings of @, and O,
are dw/da, and —dw/da, at &, = a, = 0, respectively. Also, @; is —du/ox, or dv/dx, at
a, = o, = 0. Inserting the above approximations for displacements in eqns (12) and ignoring
the comparatively small differential terms of higher orders, the three dominant strain
components at every point of the rod can be written as

33 = E3—a 1k + %2k,
Vi3 =¥ — &k,

Va3 = 72+aky, (14)
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where ¢, is the axial strain, ¥, and y, are the shear strains, k, and k, are the curvature
changes. and k;, and k,; are thc changes of pretwist of the center line of the rod, and they
are in the form of
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The relations given in (14) and (15) arc fairly general non-lincar kinematical relations for
spatial curved and pretwisted rods undergoing small deformations. The underlined parts
of the equations are those applicd to classical (lincar) rod theory. In order to derive the
cquilibrium and the one-dimensional constitutive relations as well as the form of the bound-
ary conditions onc can usc the total potential encrgy of an element of the rod as the
functional of the problem. The variational procedures can then be used as a mathematical
tool to find the stationary values of this functional. Here, the total potential energy of an
clement of the rod is composed of the strain energy and the work done by extcrnal forces ;
it can be written as

Total Potential Energy = . = n, + (16)

where

Strain Energy = =, = IJJ(5853+G?f;+G?§;) dx, da; ds (17

External Work = n. = —J‘(F|a+F26+F3W+G|@1+Gz®2+0393) dS

=Y [01a+ 00+ 0w+ M0, +M,0,+M,0;],.,, (18)

k=i

in which F,, F, and F, are the external distributed forces, and G,, G, and G, are the
distributed moments along the length of an element of a rod from s, t0 5,. §,, 0, and 0,
are the internal forces, and M, M, and M, are the internal moments at the ends of the rod
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Fig. 2. Internal and external forces on an element of a spatial rod.

(Fig. 2). For the rod to be in equilibrium, the variation of the total potential energy of the
element must be zero, that is:

on = d(n,+n.) = don,+0n, =0. (19)

The variation in the strain energy can be written as
57!, = JJJ((T 3 ‘(sl:‘_\ + T, ](Sy 1y + (72]()‘?2]) da, da: d.\' (20)

in which

Oty = Oy —a 0k, + a0k,

071y = 9y, —a,dky,

823 = 0y, + a0k,

03y = Etyy, 03 =Gy15, 63 = Gy (2D

where o,; are the stress components. Carrying out the integration over the cross-section of
the rod, i.e. integrating over a, and «,, we obtain

on, = J(Q,&y,+Q;(572+Q,¢553+M,¢5k. + M0k + My 0ky + My 8k.)ds (22)
in which
(@M M) = J‘J‘(l.a;, — )63 dx; da,
(Q1.Q: My Mjy,) = ff(a,,,az,, —30,3,8,0,;)dx, dx, (23)

where (Q,. Q.. @3) and (M. M) arc the sectional internal forces and moments, respectively.

M, and M, are the cross-sectional torques.
Using the relations (15), (18), (19) and (22), we obtain the following equilibrium
equations, the so-called Euler equations related to the functional :
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Again, the underlined parts of the equations are those applicd to the classical rod theory.
The natural boundary conditions for the above differential equations at end i may be
derived as

di d
[QI_G_!Q:+(d‘:+k';'>Q,!+K®2M2 ((?‘—K@) ] =0l
dr do
(Qz‘*'@.sQn + ds @~ "d'”! M, )‘ﬁ‘ = Q,l,

da  _ dr
(M3 + M) = -+ K )M, — M, = M,
ds ds

(@3)ier, = O3l (M\)eyy = M\lis (M), = M), (25)

and the geometric boundary condition is
(4,0,7,0,,0,,0)),., = (4,5,w,0,,0,,0,)|.. (26)
To derive the one-dimensional constitutive equations (the moment—curvature and force-

strain relationships), one can use the relations given in (14), (21) and (23). The matrix forms
of the onc-dimensional heuristic constitutive equations are

Q; Ay Sk =S\ (&

M= S he =12 |9k

M, =S =l Iy k,

Q. Ag 0 S¢ O 14!

Q. = 0 Ag 0 S« Y2 ex))
My, -8 0 I 0 ks -
M, 0 S 0 Iy ks,

in which

SAS 27:6-0
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24

Fig. 3. Natural and principal local axes of the rod cross-section.

(Ae. S S Ligs Logu h2g) = [I(lvaz~“lv“%x“f-“ﬂz)Edax dx,

(46.S816, S 116 126) = J:{(L 3. %y, rz§, d%)G dx, da,. (28)

In the above equations the elasticity constants £ and G can be variable over the cross-
scction with respect to o, and «,.

Equations (15). (24), (25) and (27) are the basic governing equations for small defor-
mation theory of clastic spatial rods in natural coordinate systems. If one sets the curvature
of the rod equal to zero; that is, K, = K, = K = 0, the governing equations for straight
beams are derived. In the same way, by inscrting K, = K, = 0 in the above-mentioned
cquations the governing cquations for pretwisted rods are derived. The resulting equations
are the same as those derived by Reissner (1983, 1985). For another test, one can obtain
the formulations for the classical theory of spatial rods.

3. CLASSICAL THEORY OF SPATIAL RODS

Let xp be the principal axes of the cross-section of the rod making an angle & with the
natural axes x,x,, as shown in Fig. 3. Using the rotation matrix for the xya; coordinate
system in o, 2,25, and employing the underlined terms in eqn (15), the kinematical relations
in the local coordinate system can be written in the form

(e} = S () + 1K1 +U)0Y)

d
{k'} = {O"}+[K1{O"} (29)
where
v ﬁl“ l;.r gx G.‘
() ={np (@ ={aty, (=97 b (0= b (04 =1,
Ix 3
Y3 wt k” O, 9,

The superscript L means that the value in the local (xya;) coordinate system has been used.
The matrix [K] is the curvature matrix in the local coordinate system, that is
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0 - K: Kv
[Kl={ K. 0 -K. (30
-K, K, 0

where K, = Ksin ®, K, = K cos ® and K. = d®/ds. The matrices [J] and [K] in eqn (29)
are given as

0 -k, K
K. 0 - K,
~K,cos’® K cos*®

) l
0 @3h
—K,sin?® K.sin"® 0

010
V1={-1 0 0] [Ki]=
000

Using the underlined terms in eqn (24) the equilibrium equations for classical rod theory
in the local xy=x; coordinate system can be simplified to the form

-

2 (@410 + (P = (0

d .
5 (M =K+ 1 +{GY) = (0] (32)
wherein
Q. F, G, M,
0 =40, {FY=4{Fp. (G} ={G. M'}={ M ».
o, F, G, M+ M,,
M,
- M
Ly [
(MY} = M,
M,

By utilizing the constitutive relations given in (27), the moment-curvature and force-strain
relations for the rod in classical theory ciun be written in the local coordinate system
(assuming £ and G are constants over the cross-section) as

{4} = [4){"}

(M} = [Nk} (33)
where
Ga 0 0 om0 o
= = y
[Al=f 0 G4 o). 11 0 0 GL 0
0 0 E4 0 0 0 GI

The general formulations developed can be employed for different kinds of spatial rod
clements such as straight beams, curved beams and pretwisted rods. For beams, we insert
K. = K, = K. = 0 in the formulations. In the samc way, for curved beams we insert K, = 0,
and for pretwisted rods we let K, = K, = 0. The special equations derived in this way are
in full agreement with those obtained for classical rod theory (Love, 1944 ; also see, for
example, Tabarrok et al., 1988 ; Farshad et al., 1989 ; Banan er al., 1989).
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4. BEHAVIOR OF APPLIED LOADING DUE TO DEFORMATION FIELD

The deformations in non-linear elasticity theory cannot be assumed infinitesimal;
therefore. the magnitudes and the directions of the applied external forces in the deformed
state of equilibrium are not the same as those in the undeformed state. The transformation
matrix from the undeformed state to the deformed state based on non-linear theory of
elasticity (Novozhilov, 1963) can be written as

l+e,, entw; en—w;
[TI=|e.—w;, l+en entw ] (34)

e|3+w: €r3— W, l+e33

The above matrix can be simplified for the spatial rods if one can insert instead of e;; and
w; the terms of displacements and rotation angles from relations (11) and (13). It becomes

1.0 9, -6,

- | - 10 e | 5)
dit .- dé
a}‘*‘l\" a; 1.0

The equilibrium equations (25) have been written in the deformed state but as related to
the undeformed directions. Therefore, the external applied loads {F} and {G} must be
specified correspondingly. To make distinctions between the loadings at the undeformed
and the deformed state let {F} and {G} represent the loads in the undeformed state in
undeformed directions and {7} and {G} represent the loads in the deformed state in the
deformed directions. It must be mentioned that { £} and {G} are usually functions of the
displacement ficld. Three different kinds of load behavior due to the deformation field are
discussed here. These are the constant direction load, the follower load, and the polar load.

4.1. Constant direction load
In this case, {F} and {G} are given and have constant directions ; therefore,
f g g

{(F} =[TI{F}L (G} =[T{G}. (36)
Utilizing the following relations
(F} = (TT'{F} and {G} = (T]"(C]

we have

{F} = (F} and {G}=[G}. (37
This means that as far as the directions are concerned the external loads must be directly
inserted in the equilibrium cquations, but for their magnitudes, they are functions of the

displacement field.

4.2. Follower load
Because of the nature of this kind of loading

{F} = {F}, {G}={G}. (38)

Utilizing the following relations
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Fig. 4. Polar loading behavior due to displacement field.

{F} = [TT{F}, {G} =TT"{G}

we have
{F} =(T1"{F}. {G} =[T1"{G}. (39

Therefore, for this kind of loading the directions of the applied external loads must be
transformed into the undeformed directions using the transformation matrix knowing that
their magnitudes are functions of the displacement field.

4.3. Polar load

In this kind of loading the applicd external forees are always directed to a point called
pole;if they are of moment type, then the moment axis goes through the pole. By considering
a spatial road as in Fig. 4, if the vectors v, r and u are defined in natural coordinates
a0y, we will have

= (Fo—r—u)
{Fy =1F| Iro e —u]
G} =Gy oW 40
Gy =1 lﬂl’o:-_l::l—”. (40)

where {u} = {u,v,w}", ris the position vector of the external applied load in the unreformed
state and r, is the position vector of the pole all expressed in the natural coordinate system.
In the above equations the load is assumed to act toward the pole; if it acts away from the
pole it must be multiplied by — | and its magnitude may be a function of the displacement
field.

5. CONCLUSION

A small finite deformation theory for spatial rods was presented. Different kinds of
loading, conservative or non-conscrvative, were discussed and formulated. As a special
case, the classical rod theory was derived. The formulations are in a systematic form and
may be applicd to different rod elements such as straight and curved beams and pretwisted
rods. One of the salient features of the formulations is to study the instability of the slender
bodies. The formulation can also be used as a basis for use with different numerical
techniques to study the non-linear behavior of rods under different loading conditions. In
this respect, a theoretical and numerical finite element stability analysis of spatial rod
systems has been developed which is the subject of another paper by Karami ez al. (1990).
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